Affiliation:
1. Bristol Centre for Complexity Sciences, University of Bristol, Bristol BS8 1TR, UK
2. Department of Engineering Mathematics, University of Bristol, Bristol BS8 1UB, UK
3. School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
Abstract
This article analyses the hearing and behaviour of mosquitoes in the context of inter-individual acoustic interactions. The acoustic interactions of tethered live pairs of
Aedes aegypti
mosquitoes, from same and opposite sex mosquitoes of the species, are recorded on independent and unique audio channels, together with the response of tethered individual mosquitoes to playbacks of pre-recorded flight tones of lone or paired individuals. A time-dependent representation of each mosquito's non-stationary wing beat frequency signature is constructed, based on Hilbert spectral analysis. A range of algorithmic tools is developed to automatically analyse these data, and used to perform a robust quantitative identification of the ‘harmonic convergence’ phenomenon. The results suggest that harmonic convergence is an active phenomenon, which does not occur by chance. It occurs for live pairs, as well as for lone individuals responding to playback recordings, whether from the same or opposite sex. Male–female behaviour is dominated by frequency convergence at a wider range of harmonic combinations than previously reported, and requires participation from both partners in the duet. New evidence is found to show that male–male interactions are more varied than strict frequency avoidance. Rather, they can be divided into two groups: convergent pairs, typified by tightly bound wing beat frequencies, and divergent pairs, that remain widely spaced in the frequency domain. Overall, the results reveal that mosquito acoustic interaction is a delicate and intricate time-dependent active process that involves both individuals, takes place at many different frequencies, and which merits further enquiry.
Funder
Engineering and Physical Sciences Research Council
Royal Society
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献