Measurement of micro-scale soil deformation around roots using four-dimensional synchrotron tomography and image correlation

Author:

Keyes S. D.1ORCID,Cooper L.1,Duncan S.1,Koebernick N.1,McKay Fletcher D. M.1,Scotson C. P.1,van Veelen A.1,Sinclair I.2,Roose T.1ORCID

Affiliation:

1. Bioengineering Sciences Research Group, Department of Mechanical Engineering, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton SO17 1BJ, UK

2. Materials Engineering Group, Department of Mechanical Engineering, Faculty of Engineering and Environment, University of Southampton, University Road, Southampton SO17 1BJ, UK

Abstract

This study applied time lapse (four-dimensional) synchrotron X-ray computed tomography to observe micro-scale interactions between plant roots and soil. Functionally contrasting maize root tips were repeatedly imaged during ingress into soil columns of varying water content and compaction. This yielded sequences of three-dimensional densiometric data, representing time-resolved geometric soil and root configurations at the micronmetre scale. These data were used as inputs for two full-field kinematic quantification methods, which enabled the analysis of three-dimensional soil deformation around elongating roots. Discrete object tracking was used to track rigid mineral grains, while continuum digital volume correlation was used to track grey-level patterns within local sub-volumes. These techniques both allowed full-field soil displacements to be quantified at an intra-rhizosphere spatial sampling scale of less than 300 µm. Significant differences in deformation mechanisms were identified around different phenotypes under different soil conditions. A uniquely strong contrast was observed between intact and de-capped roots grown in dry, compacted soil. This provides evidence that functional traits of the root cap significantly reduce the amount of soil disturbance per unit of root elongation, with this effect being particularly significant in drier soil.

Funder

Biotechnology and Biological Sciences Research Council

H2020 European Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3