Designing experiments to understand the variability in biochemical reaction networks

Author:

Ruess Jakob1,Milias-Argeitis Andreas1,Lygeros John1

Affiliation:

1. Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland

Abstract

Exploiting the information provided by the molecular noise of a biological process has proved to be valuable in extracting knowledge about the underlying kinetic parameters and sources of variability from single-cell measurements. However, quantifying this additional information a priori , to decide whether a single-cell experiment might be beneficial, is currently only possible in systems where either the chemical master equation is computationally tractable or a Gaussian approximation is appropriate. Here, we provide formulae for computing the information provided by measured means and variances from the first four moments and the parameter derivatives of the first two moments of the underlying process. For stochastic kinetic models for which these moments can be either computed exactly or approximated efficiently, the derived formulae can be used to approximate the information provided by single-cell distribution experiments. Based on this result, we propose an optimal experimental design framework which we employ to compare the utility of dual-reporter and perturbation experiments for quantifying the different noise sources in a simple model of gene expression. Subsequently, we compare the information content of a set of experiments which have been performed in an engineered light-switch gene expression system in yeast and show that well-chosen gene induction patterns may allow one to identify features of the system which remain hidden in unplanned experiments.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3