Risk factors for the evolutionary emergence of pathogens

Author:

Alexander H. K.1,Day T.1

Affiliation:

1. Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada K7L 3N6

Abstract

Recent outbreaks of novel infectious diseases (e.g. SARS, influenza H1N1) have highlighted the threat of cross-species pathogen transmission. When first introduced to a population, a pathogen is often poorly adapted to its new host and must evolve in order to escape extinction. Theoretical arguments and empirical studies have suggested various factors to explain why some pathogens emerge and others do not, including host contact structure, pathogen adaptive pathways and mutation rates. Using a multi-type branching process, we model the spread of an introduced pathogen evolving through several strains. Extending previous models, we use a network-based approach to separate host contact patterns from pathogen transmissibility. We also allow for arbitrary adaptive pathways. These generalizations lead to novel predictions regarding the impact of hypothesized risk factors. Pathogen fitness depends on the host population in which it circulates, and the ‘riskiest’ contact distribution and adaptive pathway depend on initial transmissibility. Emergence probability is sensitive to mutation probabilities and number of adaptive steps required, with the possibility of large adaptive steps (e.g. simultaneous point mutations or recombination) having a dramatic effect. In most situations, increasing overall mutation probability increases the risk of emergence; however, notable exceptions arise when deleterious mutations are available.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of masks in mitigating viral spread on networks;Physical Review E;2023-07-24

2. Quickest Inference of Susceptible-Infected Cascades in Sparse Networks;2023 IEEE International Symposium on Information Theory (ISIT);2023-06-25

3. Spreading processes with mutations over multilayer networks;Proceedings of the National Academy of Sciences;2023-06-08

4. The Interplay of Clustering and Evolution in the Emergence of Epidemics on Networks;ICC 2023 - IEEE International Conference on Communications;2023-05-28

5. Lineage frequency time series reveal elevated levels of genetic drift in SARS-CoV-2 transmission in England;2022-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3