A light-dependent magnetoreception mechanism insensitive to light intensity and polarization

Author:

Worster Susannah1ORCID,Mouritsen Henrik23,Hore P. J.1ORCID

Affiliation:

1. Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK

2. Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany

3. Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany

Abstract

Billions of migratory birds navigate thousands of kilometres every year aided by a magnetic compass sense, the biophysical mechanism of which is unclear. One leading hypothesis is that absorption of light by specialized photoreceptors in the retina produces short-lived chemical intermediates known as radical pairs whose chemistry is sensitive to tiny magnetic interactions. A potentially serious but largely ignored obstacle to this theory is how directional information derived from the Earth's magnetic field can be separated from the much stronger variations in the intensity and polarization of the incident light. Here we propose a simple solution in which these extraneous effects are cancelled by taking the ratio of the signals from two neighbouring populations of magnetoreceptors. Geometric and biological arguments are used to derive a set of conditions that make this possible. We argue that one likely location of the magnetoreceptor molecules would be in association with ordered opsin dimers in the membrane discs of the outer segments of double-cone photoreceptor cells.

Funder

FP7 Ideas: European Research Council

Volkswagenstiftung

Air Force Office of Scientific Research

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3