Cell wall structure and formation of maturing fibres of moso bamboo ( Phyllostachys pubescens ) increase buckling resistance

Author:

Wang Xiaoqing1,Ren Haiqing1,Zhang Bo23,Fei Benhua2,Burgert Ingo3

Affiliation:

1. Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China

2. Department of Biomaterials, International Centre for Bamboo and Rattan, Beijing, China

3. Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany

Abstract

The mechanical stability of the culms of monocotyledonous bamboos is highly attributed to the proper embedding of the stiff fibre caps of the vascular bundles into the soft parenchymatous matrix. Owing to lack of a vascular cambium, bamboos show no secondary thickening growth that impedes geometrical adaptations to mechanical loads and increases the necessity of structural optimization at the material level. Here, we investigate the fine structure and mechanical properties of fibres within a maturing vascular bundle of moso bamboo, Phyllostachys pubescens , with a high spatial resolution. The fibre cell walls were found to show almost axially oriented cellulose fibrils, and the stiffness and hardness of the central part of the cell wall remained basically consistent for the fibres at different regions across the fibre cap. A stiffness gradient across the fibre cap is developed by differential cell wall thickening which affects tissue density and thereby axial tissue stiffness in the different regions of the cap. The almost axially oriented cellulose fibrils in the fibre walls maximize the longitudinal elastic modulus of the fibres and their lignification increases the transverse rigidity. This is interpreted as a structural and mechanical optimization that contributes to the high buckling resistance of the slender bamboo culms.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3