Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors

Author:

Kruyt Jan W.12,Quicazán-Rubio Elsa M.2,van Heijst GertJan F.3,Altshuler Douglas L.4,Lentink David1

Affiliation:

1. Mechanical Engineering, Stanford University, 416 Escondido Mall, Stanford, CA 94305, USA

2. Experimental Zoology Group, Wageningen University, PO Box 338, 6700 AH Wageningen, The Netherlands

3. Physics Department, Eindhoven University of Technology, PO Box 516, 5600 MB Eindhoven, The Netherlands

4. Department of Zoology, University of British Columbia, 4200-6270 University Boulevard, Vancouver, British Columbia, Canada V6T1Z4

Abstract

Hummingbirds are the only birds that can sustain hovering. This unique flight behaviour comes, however, at high energetic cost. Based on helicopter and aeroplane design theory, we expect that hummingbird wing aspect ratio (AR), which ranges from about 3.0 to 4.5, determines aerodynamic efficacy. Previous quasi-steady experiments with a wing spinner set-up provide no support for this prediction. To test this more carefully, we compare the quasi-steady hover performance of 26 wings, from 12 hummingbird taxa. We spun the wings at angular velocities and angles of attack that are representative for every species and measured lift and torque more precisely. The power (aerodynamic torque × angular velocity) required to lift weight depends on aerodynamic efficacy, which is measured by the power factor. Our comparative analysis shows that AR has a modest influence on lift and drag forces, as reported earlier, but interspecific differences in power factor are large. During the downstroke, the power required to hover decreases for larger AR wings at the angles of attack at which hummingbirds flap their wings ( p < 0.05). Quantitative flow visualization demonstrates that variation in hover power among hummingbird wings is driven by similar stable leading edge vortices that delay stall during the down- and upstroke. A side-by-side aerodynamic performance comparison of hummingbird wings and an advanced micro helicopter rotor shows that they are remarkably similar.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3