The influence of sensory delay on the yaw dynamics of a flapping insect

Author:

Elzinga Michael J.1,Dickson William B.2,Dickinson Michael H.3

Affiliation:

1. California Institute of Technology, Mail Code 138-78, Pasadena, CA 91125, USA

2. IO Rodeo Inc., 402B S Marengo Avenue, Pasadena, CA 91101, USA

3. University of Washington, Box 351800, 24 Kincaid Hall, Seattle, WA 98195, USA

Abstract

In closed-loop systems, sensor feedback delays may have disastrous implications for performance and stability. Flies have evolved multiple specializations to reduce this latency, but the fastest feedback during flight involves a delay that is still significant on the timescale of body dynamics. We explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically scaled robotic model of the fruitfly,Drosophila. The robot was equipped with a real-time feedback system that performed active turns in response to measured torque about the functional yaw axis. We performed system response experiments for a proportional controller in yaw velocity for a range of feedback delays, similar in dimensionless timescale to those experienced by a fly. The results show a fundamental trade-off between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback in flies, and most probably in other insects, provide a source of active damping which compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually mediated feedback is consistent with tethered-flight measurements, free-flight observations and engineering design principles.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3