Direct enzymatic bioelectrocatalysis: differentiating between myth and reality

Author:

Milton Ross D.ORCID,Minteer Shelley D.ORCID

Abstract

Enzymatic bioelectrocatalysis is being increasingly exploited to better understand oxidoreductase enzymes, to develop minimalistic yet specific biosensor platforms, and to develop alternative energy conversion devices and bioelectrosynthetic devices for the production of energy and/or important chemical commodities. In some cases, these enzymes are able to electronically communicate with an appropriately designed electrode surface without the requirement of an electron mediator to shuttle electrons between the enzyme and electrode. This phenomenon has been termed direct electron transfer or direct bioelectrocatalysis. While many thorough studies have extensively investigated this fascinating feat, it is sometimes difficult to differentiate desirable enzymatic bioelectrocatalysis from electrocatalysis deriving from inactivated enzyme that may have also released its catalytic cofactor. This article will review direct bioelectrocatalysis of several oxidoreductases, with an emphasis on experiments that provide support for direct bioelectrocatalysis versus denatured enzyme or dissociated cofactor. Finally, this review will conclude with a series of proposed control experiments that could be adopted to discern successful direct electronic communication of an enzyme from its denatured counterpart.

Funder

Marie Sklodowska-Curie Fellowship

Air Force Office of Scientific Research

U.S. Department of Agriculture

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 150 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3