Aqueous ball milling of nacre constituents facilitates directional self-assembly of aragonite nanoparticles of the gastropod Haliotis glabra

Author:

Lemloh Marie-LouiseORCID,Verch Andreas,Weiss Ingrid M.

Abstract

A ball-milling approach was developed to investigate the constituents of isolated nacre tablets of the gastropod Haliotis glabra in aqueous suspension without additional chemical additives. The obtained particle mixtures were characterized using X-ray crystallography as well as scanning and transmission electron microscopy. Aragonite nanoparticles retained their crystal structure even after 14 h of ball milling. The long-term stability of the particle mixtures varied as a function of the ball-milling duration. An increased milling time led to rod-like stable assemblies of aragonite nanoparticles. Selected area electron diffraction investigations revealed that the longitudinal axes in about one-third of these nanoparticle rods were oriented along the crystallographic c -axis of aragonite, indicating oriented attachment of the aragonite nanoparticles. These in vitro observations support the idea that a two-stage process, separated into crystallization of nanoparticles and oriented assembly of nanocrystals, could also occur in vivo .

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3