Lévy walk process in self-organization of pedestrian crowds

Author:

Murakami Hisashi1ORCID,Feliciani Claudio1,Nishinari Katsuhiro12

Affiliation:

1. Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan

2. Department of Aeronautics and Astronautics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

Abstract

Similar to other animal groups, human crowds exhibit various collective patterns that emerge from self-organization. Recent studies have emphasized that individuals anticipate their neighbours' motions to seek their paths in dynamical pedestrian flow. This path-seeking behaviour results in deviation of pedestrians from their desired directions (i.e. the direct path to their destination). However, the strategies that individuals adopt for the behaviour and how the deviation of individual movements impact the emergent organization are poorly understood. We here show that the path-seeking behaviour is performed through a scale-free movement strategy called a Lévy walk, which might facilitate transition to the group-level behaviour. In an experiment of lane formation, a striking example of self-organized patterning in human crowds, we observed how flows of oppositely moving pedestrians spontaneously separate into several unidirectional lanes. We found that before (but not after) lane formation, pedestrians deviate from the desired direction by Lévy walk process, which is considered optimal when searching unpredictably distributed resources. Pedestrians balance a trade-off between seeking their direct paths and reaching their goals as quickly as possible; they may achieve their optimal paths through Lévy walk process, facilitating the emergent lane formation.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3