An insect-inspired collapsible wing hinge dampens collision-induced body rotation rates in a microrobot

Author:

Mountcastle Andrew M.1ORCID,Helbling E. Farrell2ORCID,Wood Robert J.2ORCID

Affiliation:

1. Department of Biology, Bates College, Lewiston, ME 04240, USA

2. School of Engineering and Applied Sciences and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA

Abstract

Some flying insects frequently collide their wingtips with obstacles, and the next generation of insect-inspired micro air vehicles will inevitably face similar wing collision risks when they are deployed in real-world environments. Wasp wings feature a flexible resilin joint called a ‘costal break’ that allows the wingtip to reversibly collapse upon collision, helping to mitigate wing damage over repeated collisions. However, the costal break may provide additional benefits beyond reducing wing wear. We tested the hypothesis that a collapsible wing tip can also dampen sudden and unpredictable body rotations caused by collisions. We designed a wing buckle hinge for an insect-scale microrobot, inspired by the costal break in wasp wings, and performed wing collision tests in a yaw-based magnetic tether system. We found that a collapsible wing tip reduced collision-induced airframe yaw rates by approximately 40% compared to a stiff wing, and that the effect was most pronounced for collisions that occurred early in the wing stroke. Our results suggest that a collapsible wingtip may simplify flight control requirements in both insects and insect-scale microrobots. We also introduce a scalable hinge design for engineering applications that recreates the nonlinear strain-weakening behaviour of a costal break.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3