Spatio-temporal skin strain distributions evoke low variability spike responses in cuneate neurons

Author:

Hayward Vincent1,Terekhov Alexander V.1,Wong Sheng-Chao1,Geborek Pontus2,Bengtsson Fredrik2,Jörntell Henrik2

Affiliation:

1. Sorbonne Universités, UPMC Univ Paris 06, UMR 7222, ISIR, F-75005, Paris, France

2. Neural basis for Sensorimotor Control, BMC F10, Lund University, SE-22184 Lund, Sweden

Abstract

A common method to explore the somatosensory function of the brain is to relate skin stimuli to neurophysiological recordings. However, interaction with the skin involves complex mechanical effects. Variability in mechanically induced spike responses is likely to be due in part to mechanical variability of the transformation of stimuli into spiking patterns in the primary sensors located in the skin. This source of variability greatly hampers detailed investigations of the response of the brain to different types of mechanical stimuli. A novel stimulation technique designed to minimize the uncertainty in the strain distributions induced in the skin was applied to evoke responses in single neurons in the cat. We show that exposure to specific spatio-temporal stimuli induced highly reproducible spike responses in the cells of the cuneate nucleus, which represents the first stage of integration of peripheral inputs to the brain. Using precisely controlled spatio-temporal stimuli, we also show that cuneate neurons, as a whole, were selectively sensitive to the spatial and to the temporal aspects of the stimuli. We conclude that the present skin stimulation technique based on localized differential tractions greatly reduces response variability that is exogenous to the information processing of the brain and hence paves the way for substantially more detailed investigations of the brain's somatosensory system.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3