Mechanical responsiveness of the endothelial cell of Schlemm's canal: scope, variability and its potential role in controlling aqueous humour outflow

Author:

Zhou E. H.1,Krishnan R.12,Stamer W. D.34,Perkumas K. M.3,Rajendran K.2,Nabhan J. F.1,Lu Q.1,Fredberg J. J.1,Johnson M.5

Affiliation:

1. Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA

2. Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

3. Ophthalmology and Vision Science, University of Arizona, Tucson, AZ, USA

4. Duke Eye Center, Duke University, Durham, NC, USA

5. Departments of Biomedical Engineering and Ophthalmology, Northwestern University, Evanston, IL, USA

Abstract

Primary open-angle glaucoma is associated with elevated intraocular pressure, which in turn is believed to result from impaired outflow of aqueous humour. Aqueous humour outflow passes mainly through the trabecular meshwork (TM) and then through pores formed in the endothelium of Schlemm's canal (SC), which experiences a basal-to-apical pressure gradient. This gradient dramatically deforms the SC endothelial cell and potentially contributes to the formation of those pores. However, mechanical properties of the SC cell are poorly defined. Using optical magnetic twisting cytometry and traction force microscopy, here we characterize the mechanical properties of primary cultures of the human SC cell, and for the first time, the scope of their changes in response to pharmacological agents that are known to modulate outflow resistance. Lysophosphatidic acid, sphingosine-1-phosphate (S1P) and thrombin caused an increase in cell stiffness by up to 200 per cent, whereas in most cell strains, exposure to latrunculin A, isoproterenol, dibutryl cyclic-AMP or Y-27632 caused a decrease in cell stiffness by up to 80 per cent, highlighting that SC cells possess a remarkably wide contractile scope. Drug responses were variable across donors. S1P, for example, caused 200 per cent stiffening in one donor strain but only 20 per cent stiffening in another. Isoproterenol caused dose-dependent softening in three donor strains but little or no response in two others, a finding mirrored by changes in traction forces and consistent with the level of expression of β 2 -adrenergic receptors. Despite donor variability, those drugs that typically increase outflow resistance systematically caused cell stiffness to increase, while in most cases, those drugs that typically decrease outflow resistance caused cell stiffness to decrease. These findings establish the endothelial cell of SC as a reactive but variable mechanical component of the aqueous humour outflow pathway. Although the mechanism and locus of increased outflow resistance remain unclear, these data suggest the SC endothelial cell to be a modulator of outflow resistance.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3