Inferring generation-interval distributions from contact-tracing data

Author:

Park Sang Woo12ORCID,Champredon David34ORCID,Dushoff Jonathan35ORCID

Affiliation:

1. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

2. Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada

3. Department of Biology, McMaster University, Hamilton, ON, Canada

4. Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON, Canada

5. Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada

Abstract

Generation intervals, defined as the time between when an individual is infected and when that individual infects another person, link two key quantities that describe an epidemic: the initial reproductive number, R initial , and the initial rate of exponential growth, r . Generation intervals can be measured through contact tracing by identifying who infected whom. We study how realized intervals differ from ‘intrinsic’ intervals that describe individual-level infectiousness and identify both spatial and temporal effects, including truncating (due to observation time), and the effects of susceptible depletion at various spatial scales. Early in an epidemic, we expect the variation in the realized generation intervals to be mainly driven by truncation and by the population structure near the source of disease spread; we predict that correcting realized intervals for the effect of temporal truncation but not for spatial effects will provide the initial forward generation-interval distribution, which is spatially informed and correctly links r and R initial . We develop and test statistical methods for temporal corrections of generation intervals, and confirm our prediction using individual-based simulations on an empirical network.

Funder

Canadian Institutes of Health Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3