Autocatalytic networks in biology: structural theory and algorithms

Author:

Steel Mike1ORCID,Hordijk Wim2,Xavier Joana C.3ORCID

Affiliation:

1. Biomathematics Research Centre, University of Canterbury, Christchurch, New Zealand

2. Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands

3. Heinrich Heine Universität, Dusseldorf, Germany

Abstract

Self-sustaining autocatalytic networks play a central role in living systems, from metabolism at the origin of life, simple RNA networks and the modern cell, to ecology and cognition. A collectively autocatalytic network that can be sustained from an ambient food set is also referred to more formally as a ‘reflexively autocatalytic food-generated’ (RAF) set. In this paper, we first investigate a simplified setting for studying RAFs, which is nevertheless relevant to real biochemistry and which allows an exact mathematical analysis based on graph-theoretic concepts. This, in turn, allows for the development of efficient (polynomial-time) algorithms for questions that are computationally intractable (NP-hard) in the general RAF setting. We then show how this simplified setting for RAF systems leads naturally to a more general notion of RAFs that are ‘generative’ (they can be built up from simpler RAFs) and for which efficient algorithms carry over to this more general setting. Finally, we show how classical RAF theory can be extended to deal with ensembles of catalysts as well as the assignment of rates to reactions according to which catalysts (or combinations of catalysts) are available.

Funder

European Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference33 articles.

1. Autocatalytic sets of proteins;Kauffman SA;J. Theor. Biol.,1986

2. Evolution before genes

3. On RAF sets and autocatalytic cycles in random reaction networks;Filisetti A;Commun. Comput. Inf. Sci.,2014

4. Autocatalytic sets in polymer networks with variable catalysis distributions

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3