Electromechanical vibration of microtubules and its application in biosensors

Author:

Li Si1,Wang Chengyuan1ORCID,Nithiarasu Perumal1

Affiliation:

1. Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK

Abstract

An electric field (EF) has the potential to excite the vibration of polarized microtubules (MTs) and thus enable their use as a biosensor for the biophysical properties of MTs or cells. To facilitate the development, this paper aims to capture the EF-induced vibration modes and the associated frequency for MTs. The analyses were carried out based on a molecular structural mechanics model accounting for the structural details of MTs. Transverse vibration, radial breathing vibration and axial vibration were achieved for MTs subject to a transverse or an axial EF. The frequency shift and stiffness alteration of MTs were also examined due to the possible changes of the tubulin interactions in physiological or pathological processes. The strong correlation achieved between the tubulin interaction and MT vibration excited by EF provides a new avenue to a non-contacting technique for the structural or property changes in MTs, where frequency shift is used as a biomarker. This technique can be used for individual MTs and is possible for those in cells when the cytosol damping on MT vibrations is largely reduced by the unique features of MT–cytosol interface.

Funder

China Scholarship Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3