Hierarchical multiscale structure–property relationships of the red-bellied woodpecker ( Melanerpes carolinus ) beak

Author:

Lee Nayeon12,Horstemeyer M. F.32,Rhee Hongjoo32,Nabors Ben4,Liao Jun12,Williams Lakiesha N.12

Affiliation:

1. Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS 39762, USA

2. Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, USA

3. Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762, USA

4. College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA

Abstract

We experimentally studied beaks of the red-bellied woodpecker to elucidate the hierarchical multiscale structure–property relationships. At the macroscale, the beak comprises three structural layers: an outer rhamphotheca layer (keratin sheath), a middle foam layer and an inner bony layer. The area fraction of each layer changes along the length of the beak giving rise to a varying constitutive behaviour similar to functionally graded materials. At the microscale, the rhamphotheca comprises keratin scales that are placed in an overlapping pattern; the middle foam layer has a porous structure; and the bony layer has a big centre cavity. At the nanoscale, a wavy gap between the keratin scales similar to a suture line was evidenced in the rhamphotheca; the middle foam layer joins two dissimilar materials; and mineralized collagen fibres were revealed in the inner bony layer. The nano- and micro-indentation tests revealed that the hardness (associated with the strength, modulus and stiffness) of the rhamphotheca layer (approx. 470 MPa for nano and approx. 320 MPa for micro) was two to three times less than that of the bony layer (approx. 1200 MPa for nano and approx. 630 MPa for micro). When compared to other birds (chicken, finch and toucan), the woodpecker's beak has more elongated keratin scales that can slide over each other thus admitting dissipation via shearing; has much less porosity in the bony layer thus strengthening the beak and focusing the stress wave; and has a wavy suture that admits local shearing at the nanoscale. The analysis of the woodpeckers' beaks provides some understanding of biological structural materials' mechanisms for energy absorption.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference47 articles.

1. Woodpecker Drilling Behavior

2. Backhouse F. 2005 Woodpeckers of North America . Buffalo NY: Firefly Books Ltd.

3. Functional and evolutionary morphology of woodpeckers

4. An adaptive modification in the ribs of woodpeckers and piculets (Picidae);Kirby VC;Auk,1980

5. Climbing and Pecking Adaptations in Some North American Woodpeckers

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3