Tracking random walks

Author:

Gallotti Riccardo1,Louf Rémi2,Luck Jean-Marc3,Barthelemy Marc34ORCID

Affiliation:

1. Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus UIB, ES-07122 Palma de Mallorca, Spain

2. Centre for Advanced Spatial Analysis (CASA), University College London, London W1T 4TJ, UK

3. Institut de Physique Théorique, Université Paris-Saclay, CEA and CNRS, 91191 Gif-sur-Yvette, France

4. CAMS (CNRS/EHESS), 190-198, avenue de France, 75244 Paris Cedex 13, France

Abstract

In empirical studies, trajectories of animals or individuals are sampled in space and time. Yet, it is unclear how sampling procedures bias the recorded data. Here, we consider the important case of movements that consist of alternating rests and moves of random durations and study how the estimate of their statistical properties is affected by the way we measure them. We first discuss the ideal case of a constant sampling interval and short-tailed distributions of rest and move durations, and provide an exact analytical calculation of the fraction of correctly sampled trajectories. Further insights are obtained with simulations using more realistic long-tailed rest duration distributions showing that this fraction is dramatically reduced for real cases. We test our results for real human mobility with high-resolution GPS trajectories, where a constant sampling interval allows one to recover at best 18% of the movements, while over-evaluating the average trip length by a factor of 2. Using a sampling interval extracted from real communication data, we recover only 11% of the moves, a value that cannot be increased above 16% even with ideal algorithms. These figures call for a more cautious use of data in quantitative studies of individuals' movements.

Funder

SESAR Joint Undertaking-EU Horizon 2020 research and innovation program

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3