Role of two-way airflow owing to temperature difference in severe acute respiratory syndrome transmission: revisiting the largest nosocomial severe acute respiratory syndrome outbreak in Hong Kong

Author:

Chen Chun1,Zhao Bin1,Yang Xudong1,Li Yuguo2

Affiliation:

1. Department of Building Science, School of Architecture, Tsinghua University, Beijing, People's Republic of China

2. Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, People's Republic of China

Abstract

By revisiting the air distribution and bioaerosol dispersion in Ward 8A where the largest nosocomial severe acute respiratory syndrome (SARS) outbreak occurred in Hong Kong in 2003, we found an interesting phenomenon. Although all the cubicles were in ‘positive pressure’ towards the corridor, the virus-containing bioaerosols generated from the index patient's cubicle were still transmitted to other cubicles, which cannot be explained in a traditional manner. A multi-zone model combining the two-way airflow effect was used to analyse this phenomenon. The multi-zone airflow model was evaluated by our experimental data. Comparing with the previous computational fluid dynamic simulation results, we found that the air exchange owing to the small temperature differences between cubicles played a major role in SARS transmission. Additionally, the validated multi-zone model combining the two-way airflow effect could simulate the pollutant transport with reasonable accuracy but much less computational time. A probable improvement in general ward design was also proposed.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3