Optimal foraging and the information theory of gambling

Author:

Baddeley Roland J.1ORCID,Franks Nigel R.2ORCID,Hunt Edmund R.23ORCID

Affiliation:

1. School of Experimental Psychology, University of Bristol, 12a Priory Road, Bristol BS8 1TU, UK

2. School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK

3. School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Merchant Venturers Building, 75 Woodland Road, Bristol BS8 1UB, UK

Abstract

At a macroscopic level, part of the ant colony life cycle is simple: a colony collects resources; these resources are converted into more ants, and these ants in turn collect more resources. Because more ants collect more resources, this is a multiplicative process, and the expected logarithm of the amount of resources determines how successful the colony will be in the long run. Over 60 years ago, Kelly showed, using information theoretic techniques, that the rate of growth of resources for such a situation is optimized by a strategy of betting in proportion to the probability of pay-off. Thus, in the case of ants, the fraction of the colony foraging at a given location should be proportional to the probability that resources will be found there, a result widely applied in the mathematics of gambling. This theoretical optimum leads to predictions as to which collective ant movement strategies might have evolved. Here, we show how colony-level optimal foraging behaviour can be achieved by mapping movement to Markov chain Monte Carlo (MCMC) methods, specifically Hamiltonian Monte Carlo (HMC). This can be done by the ants following a (noisy) local measurement of the (logarithm of) resource probability gradient (possibly supplemented with momentum, i.e. a propensity to move in the same direction). This maps the problem of foraging (via the information theory of gambling, stochastic dynamics and techniques employed within Bayesian statistics to efficiently sample from probability distributions) to simple models of ant foraging behaviour. This identification has broad applicability, facilitates the application of information theory approaches to understand movement ecology and unifies insights from existing biomechanical, cognitive, random and optimality movement paradigms. At the cost of requiring ants to obtain (noisy) resource gradient information, we show that this model is both efficient and matches a number of characteristics of real ant exploration.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3