Graph-facilitated resonant mode counting in stochastic interaction networks

Author:

Adamer Michael F.1ORCID,Woolley Thomas E.2ORCID,Harrington Heather A.1ORCID

Affiliation:

1. Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX1 2JD, UK

2. Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff CF24 4AGs, UK

Abstract

Oscillations in dynamical systems are widely reported in multiple branches of applied mathematics. Critically, even a non-oscillatory deterministic system can produce cyclic trajectories when it is in a low copy number, stochastic regime. Common methods of finding parameter ranges for stochastically driven resonances, such as direct calculation, are cumbersome for any but the smallest networks. In this paper, we provide a systematic framework to efficiently determine the number of resonant modes and parameter ranges for stochastic oscillations relying on real root counting algorithms and graph theoretic methods. We argue that stochastic resonance is a network property by showing that resonant modes only depend on the squared Jacobian matrix J 2 , unlike deterministic oscillations which are determined by J . By using graph theoretic tools, analysis of stochastic behaviour for larger interaction networks is simplified and stochastic dynamical systems with multiple resonant modes can be identified easily.

Funder

Royal Society

Engineering and Physical Sciences Research Council

Biotechnology and Biological Sciences Research Council

National Science Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coloured Noise from Stochastic Inflows in Reaction–Diffusion Systems;Bulletin of Mathematical Biology;2020-03-20

2. A review of stochastic resonance in rotating machine fault detection;Mechanical Systems and Signal Processing;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3