Leakiness and flow capture ratio of insect pectinate antennae

Author:

Jaffar-Bandjee Mourad12,Steinmann Thomas1ORCID,Krijnen Gijs2ORCID,Casas Jérôme1ORCID

Affiliation:

1. Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS, Université de Tours, Tours, France

2. Robotics and Mechatronics, Technical Medical Centre, University of Twente, Enschede, The Netherlands

Abstract

The assumption that insect pectinate antennae, which are multi-scale organs spanning over four orders of magnitude in size among their different elements, are efficient at capturing sexual pheromones is commonly made but rarely thoroughly tested. Leakiness, i.e. the proportion of air that flows within the antenna and not around it, is a key parameter which depends on both the macro- and the microstructure of the antenna as well as on the flow velocity. The effectiveness of a structure to capture flow and hence molecules is a trade-off between promoting large leakiness in order to have a large portion of the flow going through it and a large effective surface area to capture as much from the flow as possible, therefore leading to reduced leakiness. The aim of this work is to measure leakiness in 3D-printed structures representing the higher order structure of an antenna, i.e. the flagellum and the rami, with varying densities of rami and under different flow conditions. The male antennae of the moth Samia cynthia (Lepidoptera: Saturniidae) were used as templates. Particle image velocimetry in water and oil using 3D-printed scaled-up surrogates enabled us to measure leakiness over a wide range of equivalent air velocities, from 0.01 m s −1 to 5 m s −1 , corresponding to those experienced by the moth. We observed the presence of a separated vortex ring behind our surrogate structures at some velocities. Variations in the densities of rami enabled us to explore the role of the effective surface area, which we assume to permit equivalent changes in the number of sensilla that host the chemical sensors. Leakiness increased with flow velocity in a sigmoidal fashion and decreased with rami density. The flow capture ratio, i.e. the leakiness multiplied by the effective surface area divided by the total surface area, embodies the above trade-off. For each velocity, a specific structure leads to a maximum flow capture ratio. There is thus not a single pectinate architecture which is optimal at all flow velocities. By contrast, the natural design seems to be robustly functioning for the velocity range likely to be encountered in nature.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3