A gene regulatory motif that generates oscillatory or multiway switch outputs

Author:

Panovska-Griffiths Jasmina12,Page Karen M.2,Briscoe James3

Affiliation:

1. Social and Mathematical Epidemiology Group, London School of Hygiene and Tropical Medicine, Faculty of Public Health and Policy, 15–17 Tavistock Place, London WC1H 9SH, UK

2. Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK

3. MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK

Abstract

The pattern of gene expression in a developing tissue determines the spatial organization of cell type generation. We previously defined regulatory interactions between a set of transcription factors that specify the pattern of gene expression in progenitors of different neuronal subtypes of the vertebrate neural tube. These transcription factors form a circuit that acts as a multistate switch, patterning the tissue in response to a gradient of Sonic Hedgehog. Here, by simplifying aspects of the regulatory interactions, we found that the topology of the circuit allows either switch-like or oscillatory behaviour depending on parameter values. The qualitative dynamics appear to be controlled by a simpler sub-circuit, which we term the AC–DC motif. We argue that its topology provides a natural way to implement a multistate gene expression switch and we show that the circuit is readily extendable to produce more distinct stripes of gene expression. Our analysis also suggests that AC–DC motifs could be deployed in tissues patterned by oscillatory mechanisms, thus blurring the distinction between pattern-formation mechanisms relying on temporal oscillations or graded signals. Furthermore, during evolution, mechanisms of gradient interpretation might have arisen from oscillatory circuits, or vice versa.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3