The human foot and heel–sole–toe walking strategy: a mechanism enabling an inverted pendular gait with low isometric muscle force?

Author:

Usherwood J. R.1,Channon A. J.1,Myatt J. P.1,Rankin J. W.1,Hubel T. Y.1

Affiliation:

1. Structure and Motion Laboratory, The Royal Veterinary College, North Mymms, Hatfield, Herts AL9 7TA, UK

Abstract

Mechanically, the most economical gait for slow bipedal locomotion requires walking as an ‘inverted pendulum’, with: I, an impulsive, energy-dissipating leg compression at the beginning of stance; II, a stiff-limbed vault; and III, an impulsive, powering push-off at the end of stance. The characteristic ‘M’-shaped vertical ground reaction forces of walking in humans reflect this impulse–vault–impulse strategy. Humans achieve this gait by dissipating energy during the heel-to-sole transition in early stance, approximately stiff-limbed, flat-footed vaulting over midstance and ankle plantarflexion (powering the toes down) in late stance. Here, we show that the ‘M’-shaped walking ground reaction force profile does not require the plantigrade human foot or heel–sole–toe stance; it is maintained in tip–toe and high-heel walking as well as in ostriches. However, the unusual, stiff, human foot structure—with ground-contacting heel behind ankle and toes in front—enables bothmechanically economicalinverted pendular walking andphysiologically economicalmuscle loading, by producing extreme changes in mechanical advantage between muscles and ground reaction forces. With a human foot, and heel–sole–toe strategy during stance, the shin muscles that dissipate energy, or calf muscles that power the push-off, need not be loaded at all—largely avoiding the ‘cost of muscle force’—during the passive vaulting phase.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3