Effects of motion in structured populations

Author:

Krieger Madison S.,McAvoy AlexORCID,Nowak Martin A.

Abstract

In evolutionary processes, population structure has a substantial effect on natural selection. Here, we analyse how motion of individuals affects constant selection in structured populations. Motion is relevant because it leads to changes in the distribution of types as mutations march towards fixation or extinction. We describe motion as the swapping of individuals on graphs, and more generally as the shuffling of individuals between reproductive updates. Beginning with a one-dimensional graph, the cycle, we prove that motion suppresses natural selection for death–birth (DB) updating or for any process that combines birth–death (BD) and DB updating. If the rule is purely BD updating, no change in fixation probability appears in the presence of motion. We further investigate how motion affects evolution on the square lattice and weighted graphs. In the case of weighted graphs, we find that motion can be either an amplifier or a suppressor of natural selection. In some cases, whether it is one or the other can be a function of the relative reproductive rate, indicating that motion is a subtle and complex attribute of evolving populations. As a first step towards understanding less restricted types of motion in evolutionary graph theory, we consider a similar rule on dynamic graphs induced by a spatial flow and find qualitatively similar results, indicating that continuous motion also suppresses natural selection.

Funder

Office of Naval Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evolutionary dynamics of mutants that modify population structure;Journal of The Royal Society Interface;2023-11

2. The Moran process on 2-chromatic graphs;PLOS Computational Biology;2020-11-05

3. Turbulent coherent structures and early life below the Kolmogorov scale;Nature Communications;2020-05-04

4. Short-range migration can alter evolutionary dynamics in solid tumors;Journal of Statistical Mechanics: Theory and Experiment;2019-10-24

5. Motion, fixation probability and the choice of an evolutionary process;PLOS Computational Biology;2019-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3