Adhesive-based tendon-to-bone repair: failure modelling and materials selection

Author:

Avgoulas Evangelos I.1,Sutcliffe Michael P. F.1,Linderman Stephen W.2,Birman Victor3,Thomopoulos Stavros45,Genin Guy M.6ORCID

Affiliation:

1. Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

2. Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, MO 63131, USA

3. Missouri Science and Technology Global-St Louis, and Department of Mechanical and Aerospace Engineering, St Louis, MO 63131, USA

4. Department of Orthopedic Surgery, Columbia University, New York, NY 10032, USA

5. Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA

6. NSF Science and Technology Center for Engineering Mechanobiology, Department of Mechanical and Aerospace Engineering, Washington University, St Louis, MO 63130, USA

Abstract

Surgical reattachment of tendon to bone is a procedure marked by high failure rates. For example, nearly all rotator cuff repairs performed on elderly patients with massive tears ultimately result in recurrence of tearing. These high failure rates have been attributed to stress concentrations that arise due to the mechanical mismatch between tendon and bone. Although recent studies have identified potential adhesives with mechanical properties tuned to alleviate these stress concentrations, and thereby delay the onset of failure, resistance to the progression of failure has not been studied. Here, we refined the space of adhesive material properties that can improve surgical attachment by considering the fracture process. Using cohesive zone modelling and physiologically relevant values of mode I and mode II adhesive fracture toughnesses, we predicted the maximum displacement and strength at failure of idealized, adhesively bonded tendon-to-bone repairs. Repair failure occurred due to excessive relative displacement of the tendon and bone tissues for strong and compliant adhesives. The failure mechanism shifted to rupture of the entire repair for stiffer adhesives below a critical shear strength. Results identified a narrow range of materials on an Ashby chart that are suitable for adhesive repair of tendon to bone, including a range of elastomers and porous solids.

Funder

Engineering and Physical Sciences Research Council

National Institute of Biomedical Imaging and Bioengineering

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3