Relevance relations for the concept of reproducibility

Author:

Atmanspacher H.12,Bezzola Lambert L.13,Folkers G.1,Schubiger P. A.1

Affiliation:

1. Collegium Helveticum, Zurich, Switzerland

2. Institute for Frontier Areas of Psychology, Freiburg, Germany

3. Department of English, University of Basel, Switzerland

Abstract

The concept of reproducibility is widely considered a cornerstone of scientific methodology. However, recent problems with the reproducibility of empirical results in large-scale systems and in biomedical research have cast doubts on its universal and rigid applicability beyond the so-called basic sciences. Reproducibility is a particularly difficult issue in interdisciplinary work where the results to be reproduced typically refer to different levels of description of the system considered. In such cases, it is mandatory to distinguish between more and less relevant features, attributes or observables of the system, depending on the level at which they are described. For this reason, we propose a scheme for a general ‘relation of relevance’ between the level of complexity at which a system is considered and the granularity of its description. This relation implies relevance criteria for particular selected aspects of a system and its description, which can be operationally implemented by an interlevel relation called ‘contextual emergence’. It yields a formally sound and empirically applicable procedure to translate between descriptive levels and thus construct level-specific criteria for reproducibility in an overall consistent fashion. Relevance relations merged with contextual emergence challenge the old idea of one fundamental ontology from which everything else derives. At the same time, our proposal is specific enough to resist the backlash into a relativist patchwork of unconnected model fragments.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3