Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies

Author:

Falisse Antoine1ORCID,Serrancolí Gil2,Dembia Christopher L.3,Gillis Joris45,Jonkers Ilse1,De Groote Friedl1

Affiliation:

1. Department of Movement Sciences, KU Leuven, Leuven, Belgium

2. Department of Mechanical Engineering, Universitat Politècnica de Catalunya, Barcelona, Catalunya, Spain

3. Department of Mechanical Engineering, Stanford University, Stanford, CA, USA

4. Department of Mechanical Engineering, KU Leuven, Leuven, Belgium

5. DMMS Lab, Flanders Make, Leuven, Belgium

Abstract

Physics-based predictive simulations of human movement have the potential to support personalized medicine, but large computational costs and difficulties to model control strategies have limited their use. We have developed a computationally efficient optimal control framework to predict human gaits based on optimization of a performance criterion without relying on experimental data. The framework generates three-dimensional muscle-driven simulations in 36 min on average—more than 20 times faster than existing simulations—by using direct collocation, implicit differential equations and algorithmic differentiation. Using this framework, we identified a multi-objective performance criterion combining energy and effort considerations that produces physiologically realistic walking gaits. The same criterion also predicted the walk-to-run transition and clinical gait deficiencies caused by muscle weakness and prosthesis use, suggesting that diverse healthy and pathological gaits can emerge from the same control strategy. The ability to predict the mechanics and energetics of a broad range of gaits with complex three-dimensional musculoskeletal models will allow testing novel hypotheses about gait control and hasten the development of optimal treatments for neuro-musculoskeletal disorders.

Funder

Flanders Make ICON

National Institutes of Health

Stanford Bio-X

KU Leuven-BOF PFV/10/002 Centre of Excellence: Optimization in Engineering

Fonds Wetenschappelijk Onderzoek

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3