Type-III secretion filaments as scaffolds for inorganic nanostructures

Author:

Azam Anum1,Tullman-Ercek Danielle2

Affiliation:

1. Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA

2. Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA

Abstract

Nanostructured materials exhibit unique magnetic, electrical and catalytic properties. These characteristics are determined by the chemical composition, size and shape of the nanostructured components, which are challenging to modulate on such small size scales and to interface with living cells. To address this problem, we are using a self-assembling filament protein, PrgI, as a scaffold for bottom-up inorganic nanostructure synthesis. PrgI is a small protein (80 amino acids) that oligomerizes to form the type-III secretion system needle of Salmonella enterica . We demonstrate that purified PrgI monomers also spontaneously self-assemble into long filaments and that high-affinity peptide tags specific for attachment to functionalized particles can be integrated into the N-terminal region of PrgI. The resulting filaments selectively bind to gold, whether the filaments are assembled in vitro , sheared from cells or remain attached to live S. enterica cell membranes. Chemical reduction of the gold-modified PrgI variants results in structures that are several micrometres in length and which incorporate a contiguous gold surface. Mutant strains with genomically incorporated metal-binding tags retain the secretion phenotype. We anticipate that self-assembled, cell-tethered protein/metal filamentous structures have applications in sensing and energy transduction in vivo .

Funder

UC Berkeley/Sandia National Laboratories

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3