Hyperthyroidism in the personalized medicine era: the rise of mathematical optimization

Author:

Meng Fanwen1ORCID,Li Enlin2,Yen Paul Michael2,Leow Melvin Khee Shing23456ORCID

Affiliation:

1. Health Services and Outcomes Research, National Healthcare Group, Singapore

2. Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore

3. Department of Endocrinology, Tan Tock Seng Hospital, Singapore

4. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore

5. Yong Loo Lin School of Medicine, National University of Singapore, Singapore

6. Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, A*STAR, Singapore

Abstract

Thyroid over-activity or hyperthyroidism constitutes a significant morbidity afflicting the world. The current medical practice of dose titration of anti-thyroid drug (ATD) treatment for hyperthyroidism is relatively archaic, being based on arbitrary and time-consuming trending of thyroid function that requires multiple clinic monitoring visits before an optimal dose is found. This prompts a re-examination into more deterministic and efficient treatment approaches in the present personalized medicine era. Our research project seeks to develop a personalized medicine model that facilitates optimal drug dosing via the titration regimen. We analysed 49 patients' data consisting of drug dosage, time period and serum free thyroxine (FT4). Ordinary differential equation modelling was applied to describe the dynamic behaviour of FT4 concentration. With each patient's data, an optimization model was developed to determine parameters of synthesis rate, decay rate and IC 50 . We derived the closed-form time- and dose-dependent solution which allowed explicit estimates of personalized predicted FT4. Our equation system involving time, drug dosage and FT4 can be solved for any variable provided the values of the other two are known. Compared against actual FT4 data within a tolerance, we demonstrated the feasibility of predicting the FT4 subsequent to any prescribed dose of ATD with favourable accuracy using the initial three to five patient-visits' data respectively. This proposed mathematical model may assist clinicians in rapid determination of optimal ATD doses within allowable prescription limits to achieve any desired FT4 within a specified treatment period to accelerate the attainment of euthyroid targets.

Funder

Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3