Microscale light management and inherent optical properties of intact corals studied with optical coherence tomography

Author:

Wangpraseurt Daniel123ORCID,Jacques Steven4,Lyndby Niclas1,Holm Jacob Boiesen1,Pages Christine Ferrier5,Kühl Michael16ORCID

Affiliation:

1. Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark

2. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK

3. Scripps Institution of Oceanography, University of California, San Diego, CA, USA

4. Department of Biomedical Engineering, Tufts University, Medford, MA, USA

5. Centre Scientifique de Monaco Equipe ecophysiology, 8 Quai Antoine 1er, MC-98000 Monaco

6. Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia

Abstract

Coral reefs are highly productive photosynthetic systems and coral optics studies suggest that such high efficiency is due to optimized light scattering by coral tissue and skeleton. Here, we characterize the inherent optical properties, i.e. the scattering coefficient, μ s , and the anisotropy of scattering, g , of eight intact coral species using optical coherence tomography (OCT). Specifically, we describe light scattering by coral skeletons, coenoarc tissues, polyp tentacles and areas covered by fluorescent pigments (FP). Our results reveal that light scattering between coral species ranges from μ s = 3 mm −1 ( Stylophora pistillata ) to μ s = 25 mm −1 ( Echinopora lamelosa ) . For Platygyra pini , μ s was 10-fold higher for tissue versus skeleton, while in other corals (e.g. Hydnophora pilosa ) no difference was found between tissue and skeletal scattering. Tissue scattering was threefold enhanced in coenosarc tissues ( μ s = 24.6 mm −1 ) versus polyp tentacles ( μ s = 8.3 mm −1 ) in Turbinaria reniformis . FP scattering was almost isotropic when FP were organized in granule chromatophores ( g = 0.34) but was forward directed when FP were distributed diffusely in the tissue ( g = 0.96). Our study provides detailed measurements of coral scattering and establishes a rapid approach for characterizing optical properties of photosynthetic soft tissues via OCT in vivo .

Funder

Carlsbergfondet

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3