Shape optimization in exoskeletons and endoskeletons: a biomechanics analysis

Author:

Taylor David1,Dirks Jan-Henning1

Affiliation:

1. Mechanical Engineering Department, Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland

Abstract

This paper addresses the question of strength and mechanical failure in exoskeletons and endoskeletons. We developed a new, more sophisticated model to predict failure in bones and other limb segments, modelled as hollow tubes of radiusrand thicknesst. Five failure modes were considered: transverse fracture; buckling (of three different kinds) and longitudinal splitting. We also considered interactions between failure modes. We tested the hypothesis that evolutionary adaptation tends towards an optimum value ofr/t, this being the value which gives the highest strength (i.e. load-carrying capacity) for a given weight. We analysed two examples of arthropod exoskeletons: the crab merus and the locust tibia, using data from the literature and estimating the stresses during typical activities. In both cases, the optimumr/tvalue for bending was found to be different from that for axial compression. We found that the crab merus experiences similar levels of bending and compressionin vivoand that itsr/tvalue represents an ideal compromise to resist these two types of loading. The locust tibia, however, is loaded almost exclusively in bending and was found to be optimized for this loading mode. Vertebrate long bones were found to be far from optimal, having much lowerr/tvalues than predicted, and in this respect our conclusions differ from those of previous workers. We conclude that our theoretical model, though it has some limitations, is useful for investigating evolutionary development of skeletal form in exoskeletons and endoskeletons.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3