Collective learning from individual experiences and information transfer during group foraging

Author:

Falcón-Cortés Andrea1,Boyer Denis1ORCID,Ramos-Fernández Gabriel23ORCID

Affiliation:

1. Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México 04510, México

2. Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México

3. Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politénico Nacional, Ciudad de México, México

Abstract

Living in groups brings benefits to many animals, such as protection against predators and an improved capacity for sensing and making decisions while searching for resources in uncertain environments. A body of studies has shown how collective behaviours within animal groups on the move can be useful for pooling information about the current state of the environment. The effects of interactions on collective motion have been mostly studied in models of agents with no memory. Thus, whether coordinated behaviours can emerge from individuals with memory and different foraging experiences is still poorly understood. By means of an agent-based model, we quantify how individual memory and information fluxes can contribute to improving the foraging success of a group in complex environments. In this context, we define collective learning as a coordinated change of behaviour within a group resulting from individual experiences and information transfer. We show that an initially scattered population of foragers visiting dispersed resources can gradually achieve cohesion and become selectively localized in space around the most salient resource sites. Coordination is lost when memory or information transfer among individuals is suppressed. The present modelling framework provides predictions for empirical studies of collective learning and could also find applications in swarm robotics and motivate new search algorithms based on reinforcement.

Funder

National Geographic Society

PAEP-UNAM

DGAPA-PAPIIT-UNAM

CONACYT

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3