Mechanistic description of spatial processes using integrative modelling of noise-corrupted imaging data

Author:

Hross Sabrina12,Theis Fabian J.12ORCID,Sixt Michael3ORCID,Hasenauer Jan124ORCID

Affiliation:

1. Institute of Computational Biology, Helmholtz Zentrum München–German Research Center for Environmental Health, München, Germany

2. Department of Mathematics, Technische Universität München, München, Germany

3. Institute of Science and Technology Austria, Klosterneuburg, Austria

4. Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany

Abstract

Spatial patterns are ubiquitous on the subcellular, cellular and tissue level, and can be studied using imaging techniques such as light and fluorescence microscopy. Imaging data provide quantitative information about biological systems; however, mechanisms causing spatial patterning often remain elusive. In recent years, spatio-temporal mathematical modelling has helped to overcome this problem. Yet, outliers and structured noise limit modelling of whole imaging data, and models often consider spatial summary statistics. Here, we introduce an integrated data-driven modelling approach that can cope with measurement artefacts and whole imaging data. Our approach combines mechanistic models of the biological processes with robust statistical models of the measurement process. The parameters of the integrated model are calibrated using a maximum-likelihood approach. We used this integrated modelling approach to study in vivo gradients of the chemokine (C-C motif) ligand 21 (CCL21). CCL21 gradients guide dendritic cells and are important in the adaptive immune response. Using artificial data, we verified that the integrated modelling approach provides reliable parameter estimates in the presence of measurement noise and that bias and variance of these estimates are reduced compared to conventional approaches. The application to experimental data allowed the parametrization and subsequent refinement of the model using additional mechanisms. Among other results, model-based hypothesis testing predicted lymphatic vessel-dependent concentration of heparan sulfate, the binding partner of CCL21. The selected model provided an accurate description of the experimental data and was partially validated using published data. Our findings demonstrate that integrated statistical modelling of whole imaging data is computationally feasible and can provide novel biological insights.

Funder

Bundesministerium für Bildung und Forschung

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3