Bioelectric gene and reaction networks: computational modelling of genetic, biochemical and bioelectrical dynamics in pattern regulation

Author:

Pietak Alexis,Levin MichaelORCID

Abstract

Gene regulatory networks (GRNs) describe interactions between gene products and transcription factors that control gene expression. In combination with reaction–diffusion models, GRNs have enhanced comprehension of biological pattern formation. However, although it is well known that biological systems exploit an interplay of genetic and physical mechanisms, instructive factors such as transmembrane potential ( V mem ) have not been integrated into full GRN models. Here we extend regulatory networks to include bioelectric signalling, developing a novel synthesis: the bioelectricity-integrated gene and reaction (BIGR) network. Using in silico simulations, we highlight the capacity for V mem to alter steady-state concentrations of key signalling molecules inside and out of cells. We characterize fundamental feedbacks where V mem both controls, and is in turn regulated by, biochemical signals and thereby demonstrate V mem homeostatic control, V mem memory and V mem controlled state switching. BIGR networks demonstrating hysteresis are identified as a mechanisms through which more complex patterns of stable V mem spots and stripes, along with correlated concentration patterns, can spontaneously emerge. As further proof of principle, we present and analyse a BIGR network model that mechanistically explains key aspects of the remarkable regenerative powers of creatures such as planarian flatworms. The functional properties of BIGR networks generate the first testable, quantitative hypotheses for biophysical mechanisms underlying the stability and adaptive regulation of anatomical bioelectric pattern.

Funder

National Institutes of Health

National Science Foundation

Templeton World Charity Foundation

W. M. KECK Foundation

G. Harold and Leila Y. Mathers Charitable Foundation

Paul G. Allen Family Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3