Combining in silico and in vitro models to inform cell seeding strategies in tissue engineering

Author:

Coy R.12,Al-Badri G.23,Kayal C.24,O'Rourke C.25,Kingham P. J.6,Phillips J. B.27,Shipley R. J.24ORCID

Affiliation:

1. CoMPLEX, University College London, London, UK

2. UCL Centre for Nerve Engineering, University College London, London, UK

3. Department of Mathematics, University College London, London, UK

4. Department of Mechanical Engineering, University College London, London, UK

5. Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK

6. Department of Integrative Medical Biology, Umeå University, Umeå, Sweden

7. Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK

Abstract

The seeding density of therapeutic cells in engineered tissue impacts both cell survival and vascularization. Excessively high seeded cell densities can result in increased death and thus waste of valuable cells, whereas lower seeded cell densities may not provide sufficient support for the tissue in vivo , reducing efficacy. Additionally, the production of growth factors by therapeutic cells in low oxygen environments offers a way of generating growth factor gradients, which are important for vascularization, but hypoxia can also induce unwanted levels of cell death. This is a complex problem that lends itself to a combination of computational modelling and experimentation. Here, we present a spatio-temporal mathematical model parametrized using in vitro data capable of simulating the interactions between a therapeutic cell population, oxygen concentrations and vascular endothelial growth factor (VEGF) concentrations in engineered tissues. Simulations of collagen nerve repair constructs suggest that specific seeded cell densities and non-uniform spatial distributions of seeded cells could enhance cell survival and the generation of VEGF gradients. These predictions can now be tested using targeted experiments.

Funder

Engineering and Physical Sciences Research Council

British Heart Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3