Estimation of gestational age from fundal height: a solution for resource-poor settings

Author:

White Lisa J.12,Lee Sue J.12,Stepniewska Kasia12,Simpson Julie A.23,Dwell Saw Lu Mu4,Arunjerdja Ratree4,Singhasivanon Pratap2,White Nicholas J.12,Nosten Francois124,McGready Rose124

Affiliation:

1. Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 7LJ, UK

2. Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

3. Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, School of Population Health, The University of Melbourne, Melbourne, Victoria 3010, Australia

4. Shoklo Malaria Research Unit, PO Box 46 Mae Sot, Tak 63110, Thailand

Abstract

Many women in resource-poor settings lack access to reliable gestational age assessment because they do not know their last menstrual period; there is no ultrasound (US) and methods of newborn gestational age dating are not practised by birth attendants. A bespoke multiple-measures model was developed to predict the expected date of delivery determined by US. The results are compared with both a linear and a nonlinear model. Prospectively collected early US and serial symphysis-pubis fundal height (SFH) data were used in the models. The data were collected from Karen and Burmese women attending antenatal care on the Thai–Burmese border. The multiple-measures model performed best, resulting in a range of accuracy depending on the number of SFH measures recorded per mother (for example six SFH measurements resulted in a prediction accuracy of ±2 weeks). SFH remains the proxy for gestational age in much of the resource-poor world. While more accurate measures should be encouraged, we demonstrate that a formula that incorporates at least three SFH measures from an individual mother and the slopes between them provide a significant increase in the accuracy of prediction compared with the linear and nonlinear formulae also using multiple SFH measures.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3