Spatial organization and interactions of harvester ants during foraging activity

Author:

Davidson Jacob D.12ORCID,Gordon Deborah M.3ORCID

Affiliation:

1. Department of Collective Behavior, Max Planck Institute for Ornithology, Konstanz, Germany

2. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA

3. Department of Biology, Stanford University, Stanford, CA, USA

Abstract

Local interactions, when individuals meet, can regulate collective behaviour. In a system without any central control, the rate of interaction may depend simply on how the individuals move around. But interactions could in turn influence movement; individuals might seek out interactions, or their movement in response to interaction could influence further interaction rates. We develop a general framework to address these questions, using collision theory to establish a baseline expected rate of interaction based on proximity. We test the models using data from harvester ant colonies. A colony uses feedback from interactions inside the nest to regulate foraging activity. Potential foragers leave the nest in response to interactions with returning foragers with food. The time series of interactions and local density of ants show how density hotspots lead to interactions that are clustered in time. A correlated random walk null model describes the mixing of potential and returning foragers. A model from collision theory relates walking speed and spatial proximity with the probability of interaction. The results demonstrate that although ants do not mix homogeneously, trends in interaction patterns can be explained simply by the walking speed and local density of surrounding ants.

Funder

National Institutes of Health

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3