Disease transmission promotes evolution of host spatial patterns

Author:

Irvine Michael A.1ORCID,Bull James C.2,Keeling Matthew J.3

Affiliation:

1. Centre for Complexity Science, University of Warwick, Coventry, UK

2. Department of Biosciences, University of Swansea, Swansea, UK

3. Mathematics Institute and Department of Biological Sciences, University of Warwick, Coventry, UK

Abstract

Ecological dynamics can produce a variety of striking patterns. On ecological time scales, pattern formation has been hypothesized to be due to the interaction between a species and its local environment. On longer time scales, evolutionary factors must be taken into account. To examine the evolutionary robustness of spatial pattern formation, we construct a spatially explicit model of vegetation in the presence of a pathogen. Initially, we compare the dynamics for vegetation parameters that lead to competition induced spatial patterns and those that do not. Over ecological time scales, banded spatial patterns dramatically reduced the ability of the pathogen to spread, lowered its endemic density and hence increased the persistence of the vegetation. To gain an evolutionary understanding, each plant was given a heritable trait defining its resilience to competition; greater competition leads to lower vegetation density but stronger spatial patterns. When a disease is introduced, the selective pressure on the plant's resilience to the competition parameter is determined by the transmission of the disease. For high transmission, vegetation that has low resilience to competition and hence strong spatial patterning is an evolutionarily stable strategy. This demonstrates a novel mechanism by which striking spatial patterns can be maintained by disease-driven selection.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3