Collective benefits in traffic during mega events via the use of information technologies

Author:

Xu Yanyan1,González Marta C.12

Affiliation:

1. Department of Civil and Environmental Engineering, MIT, Cambridge, MA 02139, USA

2. Center for Advanced Urbanism, MIT, Cambridge, MA 02139, USA

Abstract

Information technologies today can inform each of us about the route with the shortest time, but they do not contain incentives to manage travellers such that we all get collective benefits in travel times. To that end we need travel demand estimates and target strategies to reduce the traffic volume from the congested roads during peak hours in a feasible way. During large events, the traffic inconveniences in large cities are unusually high, yet temporary, and the entire population may be more willing to adopt collective recommendations for collective benefits in traffic. In this paper, we integrate, for the first time, big data resources to estimate the impact of events on traffic and propose target strategies for collective good at the urban scale. In the context of the Olympic Games in Rio de Janeiro, we first predict the expected increase in traffic. To that end, we integrate data from mobile phones, Airbnb, Waze and transit information, with game schedules and expected attendance in each venue. Next, we evaluate different route choice scenarios for drivers during the peak hours. Finally, we gather information on the trips that contribute the most to the global congestion which could be redirected from vehicles to transit. Interestingly, we show that (i) following new route alternatives during the event with individual shortest times can save more collective travel time than keeping the routine routes used before the event, uncovering the positive value of information technologies during events; (ii) with only a small proportion of people selected from specific areas switching from driving to public transport, the collective travel time can be reduced to a great extent. Results are presented online for evaluation by the public and policymakers ( www.flows-rio2016.com (last accessed 3 September 2017)).

Funder

Ford

Ford, the Department of Transportation's grant of the New England UTC Y25

the MIT Portugal Program

the MIT-Brazil seed Grants Program

the Center for Complex Engineering Systems at KACST-MIT

the MIT-QCRI research collaboration

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3