Affiliation:
1. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, People's Republic of China
Abstract
Inspired by biological topographical surfaces, micropatterned elastomeric surfaces with square pillars and dimples of different geometry scales were fabricated. Their wettability and adhesion properties with various liquids were systematically investigated and compared with flat surfaces. Interesting results were obtained in the case of silicone oil (the toe-pad-like wetting case) in that the scale-dependent wettability and adhesion performed inversely for pillars and dimples. Micropillars significantly enhanced the surface wettability with a geometry scale dependence, whereas the dimples suppressed the wettability independent of the geometry scale. The adhesion force of the micropillars increased with an increase of the geometry scale. However, in the case of the micro-dimples, the adhesion force obviously decreased with an increase of the geometry scale. This behaviour was attributed to the fact that pillars are ‘open’ to oil but dimples are ‘close’ to oil, presenting different orientations to the solid–liquid interface.
Funder
National Nature Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献