Effect of synaptic cell-to-cell transmission and recombination on the evolution of double mutants in HIV

Author:

Kreger Jesse1ORCID,Komarova Natalia L.1ORCID,Wodarz Dominik12ORCID

Affiliation:

1. Department of Mathematics, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA

2. Department of Population Health and Disease Prevention Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA

Abstract

Recombination in HIV infection can impact virus evolution in vivo in complex ways, as has been shown both experimentally and mathematically. The effect of free virus versus synaptic, cell-to-cell transmission on the evolution of double mutants, however, has not been investigated. Here, we do so by using a stochastic agent-based model. Consistent with data, we assume spatial constraints for synaptic but not for free-virus transmission. Two important effects of the viral spread mode are observed: (i) for disadvantageous mutants, synaptic transmission protects against detrimental effects of recombination on double mutant persistence. Under free virus transmission, recombination increases double mutant levels for negative epistasis, but reduces them for positive epistasis. This reduction for positive epistasis is much diminished under predominantly synaptic transmission, and recombination can, in fact, lead to increased mutant levels. (ii) The mode of virus spread also directly influences the evolutionary fate of double mutants. For disadvantageous mutants, double mutant production is the predominant driving force, and hence synaptic transmission leads to highest double mutant levels due to increased transmission efficiency. For advantageous mutants, double mutant spread is the most important force, and hence free virus transmission leads to fastest invasion due to better mixing. For neutral mutants, both production and spread of double mutants are important, and hence an optimal mixture of free virus and synaptic transmission maximizes double mutant fractions. Therefore, both free virus and synaptic transmission can enhance or delay double mutant evolution. Implications for drug resistance in HIV are discussed.

Funder

National Science Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3