Growing from a few cells: combined effects of initial stochasticity and cell-to-cell variability

Author:

Barizien A.12ORCID,Suryateja Jammalamadaka M. S.13,Amselem G.1ORCID,Baroud Charles N.12ORCID

Affiliation:

1. LadHyX and Department of Mechanics, Ecole Polytechnique, CNRS, 91128 Palaiseau, France

2. Department Genomes and Genetics, Physical microfluidics and Bioengineering, Institut Pasteur, 75015 Paris, France

3. Center for Research and Interdisciplinarity, 75014 Paris, France

Abstract

The growth of a cell population from a large inoculum appears deterministic, although the division process is stochastic at the single-cell level. Microfluidic observations, however, display wide variations in the growth of small populations. Here we combine theory, simulations and experiments to explore the link between single-cell stochasticity and the growth of a population starting from a small number of individuals. The study yields descriptors of the probability distribution function (PDF) of the population size under three sources of stochasticity: cell-to-cell variability, uncertainty in the number of initial cells and generation-dependent division times. The PDF, rescaled to account for the exponential growth of the population, is found to converge to a stationary distribution. All moments of the PDF grow exponentially with the same growth rate, which depends solely on cell-to-cell variability. The shape of the PDF, however, contains the signature of all sources of stochasticity, and is dominated by the early stages of growth, and not by the cell-to-cell variability. Thus, probabilistic predictions of the growth of bacterial populations can be obtained with implications for both naturally occurring conditions and technological applications of single-cell microfluidics.

Funder

H2020 European Research Council

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference42 articles.

1. A Comparison of Methods to Measure Fitness in Escherichia coli

2. Microbial cell individuality and the underlying sources of heterogeneity;Avery SV;Nat. Rev.,2006

3. Bacterial Persistence as a Phenotypic Switch

4. Robust Growth of Escherichia coli

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3