Zonation of hepatic fat accumulation: insights from mathematical modelling of nutrient gradients and fatty acid uptake

Author:

Schleicher Jana12ORCID,Dahmen Uta1,Guthke Reinhard3,Schuster Stefan2

Affiliation:

1. Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, University Hospital Jena, Jena, Germany

2. Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany

3. Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Jena, Germany

Abstract

Intrinsic of non-alcoholic fatty liver diseases is an aberrant accumulation of triglycerides (steatosis), which occurs inhomogeneously within lobules. To improve our understanding of the mechanisms involved in this zonation patterning, we developed a mathematical multicompartment model of hepatic fatty acid metabolism accompanied by blood flow simulations. A model analysis determines the influence of the uptake process of fatty acids, the porto-central gradient of plasma fatty acid concentration, and the oxygen supply via blood on the zonation of triglyceride accumulation. From this theoretical perspective, the plasma oxygen gradient, but not the fatty acid gradient, leads the way to a zonated triglyceride accumulation by its decisive role in oxidative processes. In addition, the uptake mechanism of fatty acids seems to be fundamental for a pericentral dominance of steatosis. However, the mechanism of cellular fatty acid uptake from the blood is still under debate. Our theoretical approach supports the transporter-mediated uptake mechanism and reveals that the maximal velocity of fatty acid uptake affects the switching between a periportal and a pericentral triglyceride accumulation. Further research on hepatic fatty acid uptake is needed to push forward our understanding of aberrant triglyceride accumulation in diet-induced steatosis.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3