Controllable biomimetic birdsong

Author:

Mukherjee Aryesh1ORCID,Mandre Shreyas2ORCID,Mahadevan L.13456ORCID

Affiliation:

1. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

2. School of Engineering, Brown University, Providence, RI, USA

3. Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA

4. Department of Physics, Harvard University, Cambridge, MA 02138, USA

5. Kavli Institute for Nanobio Science and Technology, Harvard University, Cambridge, MA, USA

6. Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA

Abstract

Birdsong is the product of the controlled generation of sound embodied in a neuromotor system. From a biophysical perspective, a natural question is that of the difficulty of producing birdsong. To address this, we built a biomimetic syrinx consisting of a stretched simple rubber tube through which air is blown, subject to localized mechanical squeezing with a linear actuator. A large static tension on the tube and small dynamic variations in the localized squeezing allow us to control transitions between three states: a quiescent state, a periodic state and a solitary wave state. The static load brings the system close to threshold for spontaneous oscillations, while small dynamic loads allow for rapid transitions between the states. We use this to mimic a variety of birdsongs via the slow–fast modulated nonlinear dynamics of the physical substrate, the syrinx, regulated by a simple controller. Finally, a minimal mathematical model of the system inspired by our observations allows us to address the problem of song mimicry in an excitable oscillator for tonal songs.

Funder

MacArthur Foundation

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Material Basis of Perceptual Information;Kagaku tetsugaku;2020-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3