A method for estimating the oxygen consumption rate in multicellular tumour spheroids

Author:

Grimes David Robert1,Kelly Catherine1,Bloch Katarzyna1,Partridge Mike1

Affiliation:

1. The Gray Institute for Radiation Oncology and Biology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK

Abstract

Hypoxia occurs when oxygen levels within a tissue drop below normal physiological levels. In tumours, hypoxia is associated with poor prognosis, increased likelihood of metastasis and resistance to therapy. Imaging techniques, for example, positron emission tomography, are increasingly used in the monitoring of tumour hypoxia and have the potential to help in the planning of radiotherapy. For this application, improved understanding of the link between image contrast and quantitative underlying oxygen distribution would be very useful. Mathematical models of tissue hypoxia and image formation can help understand this. Hypoxia is caused by an imbalance between vascular supply and tissue demand. While much work has been dedicated to the quantitative description of tumour vascular networks, consideration of tumour oxygen consumption is largely neglected. Oxidative respiration in standard two-dimensional cell culture has been widely studied. However, two-dimensional culture fails to capture the complexities of growing three-dimensional tissue which could impact on the oxygen usage. In this study, we build on previous descriptions of oxygen consumption and diffusion in three-dimensional tumour spheroids and present a method for estimating rates of oxygen consumption from spheroids, validated using stained spheroid sections. Methods for estimating the local partial pressure of oxygen, the diffusion limit and the extents of the necrotic core, hypoxic region and proliferating rim are also derived. These are validated using experimental data from DLD1 spheroids at different stages of growth. A relatively constant experimentally derived diffusion limit of 232 ± 22 μm and an O 2 consumption rate of 7.29 ± 1.4 × 10 −7 m 3 kg −1 s −1 for the spheroids studied was measured, in agreement with laboratory measurements.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3