Fly with the flock: immersive solutions for animal movement visualization and analytics

Author:

Klein Karsten12ORCID,Sommer Björn13,Nim Hieu T.2,Flack Andrea45ORCID,Safi Kamran46ORCID,Nagy Máté4657ORCID,Feyer Stefan P.1,Zhang Ying1,Rehberg Kim1,Gluschkow Alexej1,Quetting Michael4,Fiedler Wolfgang4,Wikelski Martin465,Schreiber Falk125

Affiliation:

1. Department of Computer and Information Science, University of Konstanz, Fach 76, 78457 Konstanz, Germany

2. Faculty of Information Technology, Monash University, Melbourne, Australia

3. School of Design, Royal College of Arts, London, UK

4. Max-Planck-Institute for Ornithology, Radolfzell, Germany

5. Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany

6. Department of Biology, University of Konstanz, Konstanz, Germany

7. MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary

Abstract

Understanding the movement of animals is important for a wide range of scientific interests including migration, disease spread, collective movement behaviour and analysing motion in relation to dynamic changes of the environment such as wind and thermal lifts. Particularly, the three-dimensional (3D) spatial–temporal nature of bird movement data, which is widely available with high temporal and spatial resolution at large volumes, presents a natural option to explore the potential of immersive analytics (IA). We investigate the requirements and benefits of a wide range of immersive environments for explorative visualization and analytics of 3D movement data, in particular regarding design considerations for such 3D immersive environments, and present prototypes for IA solutions. Tailored to biologists studying bird movement data, the immersive solutions enable geo-locational time-series data to be investigated interactively, thus enabling experts to visually explore interesting angles of a flock and its behaviour in the context of the environment. The 3D virtual world presents the audience with engaging and interactive content, allowing users to ‘fly with the flock’, with the potential to ascertain an intuitive overview of often complex datasets, and to provide the opportunity thereby to formulate and at least qualitatively assess hypotheses. This work also contributes to ongoing research efforts to promote better understanding of bird migration and the associated environmental factors at the global scale, thereby providing a visual vehicle for driving public awareness of environmental issues and bird migration patterns.

Funder

Deutsche Forschungsgemeinschaft

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3