Analytical reduction of combinatorial complexity arising from multiple protein modification sites

Author:

Birtwistle Marc R.1

Affiliation:

1. Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA

Abstract

Combinatorial complexity is a major obstacle to ordinary differential equation (ODE) modelling of biochemical networks. For example, a protein with 10 sites that can each be unphosphorylated, phosphorylated or bound to adaptor protein requires 3 10 ODEs. This problem is often dealt with by making ad hoc assumptions which have unclear validity and disallow modelling of site-specific dynamics. Such site-specific dynamics, however, are important in many biological systems. We show here that for a common biological situation where adaptors bind modified sites, binding is slow relative to modification/demodification, and binding to one modified site hinders binding to other sites, for a protein with n modification sites and m adaptor proteins the number of ODEs needed to simulate the site-specific dynamics of biologically relevant, lumped bound adaptor states is independent of the number of modification sites and equal to m + 1, giving a significant reduction in system size. These considerations can be relaxed considerably while retaining reasonably accurate descriptions of the true system dynamics. We apply the theory to model, using only 11 ODEs, the dynamics of ligand-induced phosphorylation of nine tyrosines on epidermal growth factor receptor (EGFR) and primary recruitment of six signalling proteins (Grb2, PI3K, PLCγ1, SHP2, RasA1 and Shc1). The model quantitatively accounts for experimentally determined site-specific phosphorylation and dephosphorylation rates, differential affinities of binding proteins for the phosphorylated sites and binding protein expression levels. Analysis suggests that local concentration of site-specific phosphatases such as SHP2 in membrane subdomains by a factor of approximately 10 7 is critical for effective site-specific regulation. We further show how our framework can be extended with minimal effort to consider binding cooperativity between Grb2 and c-Cbl, which is important for receptor trafficking. Our theory has potentially broad application to reduce combinatorial complexity and allow practical simulation of a variety ODE models relevant to systems biology and pharmacology applications to allow exploration of key aspects of complexity that control signal flux.

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3