How pigeons couple three-dimensional elbow and wrist motion to morph their wings

Author:

Stowers Amanda K.ORCID,Matloff Laura Y.ORCID,Lentink DavidORCID

Abstract

Birds change the shape and area of their wings to an exceptional degree, surpassing insects, bats and aircraft in their ability to morph their wings for a variety of tasks. This morphing is governed by a musculoskeletal system, which couples elbow and wrist motion. Since the discovery of this effect in 1839, the planar ‘drawing parallels’ mechanism has been used to explain the coupling. Remarkably, this mechanism has never been corroborated from quantitative motion data. Therefore, we measured how the wing skeleton of a pigeon ( Columba livia ) moves during morphing. Despite earlier planar assumptions, we found that the skeletal motion paths are highly three-dimensional and do not lie in the anatomical plane, ruling out the ‘drawing parallels’ mechanism. Furthermore, micro-computed tomography scans in seven consecutive poses show how the two wrist bones contribute to morphing, particularly the sliding ulnare. From these data, we infer the joint types for all six bones that form the wing morphing mechanism and corroborate the most parsimonious mechanism based on least-squares error minimization. Remarkably, the algorithm shows that all optimal four-bar mechanisms either lock, are unable to track the highly three-dimensional bone motion paths, or require the radius and ulna to cross for accuracy, which is anatomically unrealistic. In contrast, the algorithm finds that a six-bar mechanism recreates the measured motion accurately with a parallel radius and ulna and a sliding ulnare. This revises our mechanistic understanding of how birds morph their wings, and offers quantitative inspiration for engineering morphing wings.

Funder

Office of Naval Research (ONR) Multidisciplinary University Research Initiative

KACST Center of Excellence for Aeronautics at Stanford

National Science Foundation

Air Force Office of Scientific Research

Publisher

The Royal Society

Subject

Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biophysics,Biotechnology

Reference45 articles.

1. Uber die Bewegungen von Radius und Ulna am Vogelflugel;Bergmann C;Arch. Anat. Physiol. wiss Med.,1839

2. Bony Mechanism of Automatic Flexion and Extension in the Pigeon's Wing

3. Mechanism of Flexion and Extension in Birds' Wings

4. Nachtigall W. 1985 Warum die Vögel fliegen. Rasch und Rohring.

5. Vertebrate Flight

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3